超快速液相色谱-三重四级杆/线性离子阱质谱法同时测定不同产地竹节参药材中多元成分

陈佳丽, 谈梦霞, 邹立思, 刘训红, 陈舒妤, 石婧婧, 王程成, 梅余琪

中国药学杂志 ›› 2019, Vol. 54 ›› Issue (3) : 226-233.

PDF(1419 KB)
PDF(1419 KB)
中国药学杂志 ›› 2019, Vol. 54 ›› Issue (3) : 226-233. DOI: 10.11669/cpj.2019.03.010
论著

超快速液相色谱-三重四级杆/线性离子阱质谱法同时测定不同产地竹节参药材中多元成分

  • 陈佳丽, 谈梦霞, 邹立思, 刘训红*, 陈舒妤, 石婧婧, 王程成, 梅余琪
作者信息 +

Simultaneous Determination of Multiple Constituents in Panacis Japonici Rhizoma from Different Habitats by UFLC-QTRAP-MS/MS

  • CHEN Jia-li, TAN Meng-xia, ZOU Li-si, LIU Xun-hong*, CHEN Shu-yu, SHI Jing-jing, WANG Cheng-cheng, MEI Yu-qi
Author information +
文章历史 +

摘要

目的 建立超快速液相色谱-三重四级杆/线性离子阱质谱法(UFLC-QTRAP-MS/MS)同时测定不同产地竹节参药材中皂苷、氨基酸及核苷类共33种成分含量的方法。方法 采用XBridge C18(4.6 mm×100 mm,3.5 μm),以0.1%甲酸水-0.1%甲酸乙腈为流动相,梯度洗脱,流速0.8 mL·min-1,柱温30 ℃,多反应监测离子扫描模式(MRM)测定。结果 33种成分在一定浓度内均呈现良好的线性关系,相关系数均大于0.999 0;精密度、重复性和稳定性良好;平均加样回收率为96.95%~101.8%,RSD均小于5%。结论 所建立的方法准确、可靠,可为竹节参药材内在质量的综合评价和全面控制提供新的方法参考。

Abstract

OBJECTIVE To develop a method for the determination of saponins, amino acids and nucleosides in Panacis Japonici Rhizoma from different habitats by UFLC-QTRAP-MS/MS. METHODS The chromatographic separation was performed on an XBridge C18 coulumn(4.6 mm×100 mm,3.5 μm) at 30 ℃ with gradient elution of 0.1% formic acid solution-0.1% formic acid acetonitrile, and the flow rate was 0.8 mL·min-1, using multiple-reaction monitoring(MRM) mode. RESULTS The 33 constituents showed good linearity(r>0.999 0) in the range of the tested concentrations; the precision, repeatability and stability were good; the average recovery rates were between 96.95% and 101.8%, and the relative standard deviations were less than 5%. CONCLUSION The established method is accurate and reliable, which can be used as a reference for the quality evaluation and control of Panacis Japonici Rhizoma.

关键词

超快速液相色谱-三重四级杆/线性离子阱质谱法 / 竹节参 / 皂苷 / 氨基酸 / 核苷

Key words

UFLC-QTRAP-MS/MS / Panacis Japonici Rhizoma / saponin / amino acid / nucleoside

引用本文

导出引用
陈佳丽, 谈梦霞, 邹立思, 刘训红, 陈舒妤, 石婧婧, 王程成, 梅余琪. 超快速液相色谱-三重四级杆/线性离子阱质谱法同时测定不同产地竹节参药材中多元成分[J]. 中国药学杂志, 2019, 54(3): 226-233 https://doi.org/10.11669/cpj.2019.03.010
CHEN Jia-li, TAN Meng-xia, ZOU Li-si, LIU Xun-hong, CHEN Shu-yu, SHI Jing-jing, WANG Cheng-cheng, MEI Yu-qi. Simultaneous Determination of Multiple Constituents in Panacis Japonici Rhizoma from Different Habitats by UFLC-QTRAP-MS/MS[J]. Chinese Pharmaceutical Journal, 2019, 54(3): 226-233 https://doi.org/10.11669/cpj.2019.03.010
中图分类号: R917   

参考文献

[1] Ch.P (2015). Vol Ⅰ(中国药典2015 年版,一部) . 2015: 138-139.
[2] ZHANG S P, WANG R F, ZENG W Y, et al. Resource investigation of traditional medicinal plant Panax japonicus(T.Nees) C.A. Mey and its varieties in China. J Ethnopharmacol, 2015,166: 79-85.
[3] ZHAI K. Assessment on soil environment quality of Panax japonicus GAP basis. Hubei Agric Sci(湖北农业科学), 2010, 49 (10):2477-2478.
[4] WU Q S, CHEN P, ZHANG Q W. Advance in research of chemical constituents, pharmacological activities and analytical methods of Panax japonicus. Asia-Pacific Tradit Med(亚太传统医药), 2016, 12(6):46-54.
[5] LI Y G. The mechanistic approach of saponins from Panax japonicus for treatment of alcohol-induced hepaticinjury. Zhejiang: Zhejiang University, 2011.
[6] DUN YY, LIU M, CHEN J, et al. Regulatory effects of saponins from Panax japonicus on colonic epithelial tight junctions in aging rats. J Ginseng Res, 2018, 42(1):50-56.
[7] HE H B, XU J, XU Y Q, et al. Cardioprotective effects of saponins from Panax japonicus on acute myocardial ischemia against oxidative stress-triggered damage and cardiac cell death in rats. J Ethnopharmacol,2012, 140(1):73-82.
[8] ZHANG S S, ZHANG D J, ZHU T J, et al. A pharmacological annalysis of the amino acid components of Cordyceps sinensis Sacc. Acta Pharm Sin(药学学报), 1991, 26(5):326-330.
[9] EFRON D T, BARBUL A. Arginine and immunonutrition: a reevaluation. Nutrition, 2000, 16(1):73-74.
[10] ZHOU Q. Glycine protection against myocardial ischemic injury and its mechanism. Guangdong: Jinan University, 2002.
[11] CARINI R, BELLOMO G, CESARIS M D, et al. Glycine protects against hepatocyte killing by KCN or hypoxia by preventing intracellular Na+ overload in the rat. Hepatol, 1997, 26(1):107-112.
[12] AI Z, QIAN Z M, LI W J, et al. Recent advances in the analysis of nucleosides in Chinese cordyceps. Mycosystema(菌菇学报), 2016, 35(4):388-403.
[13] JIANG J Y, LIU F. The antiinflammatory effects of an adenosine. Chin Pharmacol Bull(中国药理学通报), 1998, 14(1): 79-82.
[14] ZHANG Q L, ZHAO J, WANG Q G, et al. The effect and mechanism of adenosine on secondary spinal cord injury. Chin J Orthop(中华骨科杂志), 1999,19(6):363-366.
[15] LIU D L, QU G X, WANG N L, et al. Antiplatelet aggregation constituents from Trichosanthes kirilowii. Chin Tradit Herb Drugs(中草药), 2004, 35(12):1334-1336.
[16] IOANNIDIS P, COURTIS N, HAVREDAKI M, et al. The polyadenylation inhibitor cordycepin (3'dA) causes a decline in c-MYC mRNA levels without affecting c-MYC protein levels. Oncogene, 1999, 18 (1):117-125.
[17] WU Q S, WANG C M, LU J J, et al. Simultaneous determination of six saponins in Panax Japonici Rhizoma using quantitative analysis of multi-components with single-marker method. Curr Pharm Anal, 2017,13(3):289-295.
[18] MENG F C, WU Q S, WANG R, et al. A novel strategy for quantitative analysis of major ginsenosides in Panacis Japonici Rhizoma with a standardized reference fraction. Molecules, 2017, 22(12):2067-2074.
[19] ABLIZA Z, LI B, KEYUM A, et al. Principle and applications of a new quadrupole-linear ion trap mass spectrometer(QTRAPTM). Mod Instr Med Treat(现代仪器与医疗), 2004,10(5):9-13.

基金

江苏高校优势学科建设工程项目资助(YSXK-2014);江苏高校品牌专业建设工程项目资助(PPZY2015A070)
PDF(1419 KB)

Accesses

Citation

Detail

段落导航
相关文章

/